Command documentation sourced from the linux-command project This comprehensive command reference is part of the linux-command documentation project.
colrm - Remove Columns from File
The colrm command is a simple yet powerful text processing utility that removes specified columns from lines of text read from standard input. It processes input line by line, deleting characters starting from a specified column position to either a specific ending column or the end of the line. The command is particularly useful for processing fixed-width format files, removing unnecessary whitespace, or extracting specific portions of structured text data. Colrm works with character positions starting from 1 and operates on each line independently, making it ideal for tabular data processing and log file manipulation.
Basic Syntax
colrm [START [STOP]]
Parameters
START- Starting column number to begin removal (1-based indexing)STOP- Ending column number to stop removal (inclusive)
Parameter Behavior
- No parameters: Acts as a passthrough (copies input to output unchanged)
- START only: Removes from column START to the end of each line
- START and STOP: Removes columns from START through STOP (inclusive)
- Column indexing: Uses 1-based indexing (first character is column 1)
- Line processing: Processes each line independently
- Character-based: Operates on characters, not words or fields
Usage Examples
Basic Column Removal
Single Column to End
# Remove from column 5 to end of line
echo "Hello World Linux" | colrm 5
# Output: Hell
# Remove from column 3 onwards
echo "1234567890" | colrm 3
# Output: 12
# Process file removing from column 10
colrm 10 < input.txt > output.txt
# Remove everything after position 20
printf "This is a test line for demonstration\n" | colrm 21
# Output: This is a test line
Column Range Removal
# Remove columns 3 through 6
echo "1234567890" | colrm 3 6
# Output: 127890
# Remove columns 5 through 8
echo "Linux Command Line" | colrm 5 8
# Output: Lin Command Line
# Process file removing columns 2-4
colrm 2 4 < data.txt > processed.txt
# Multiple range removals in pipeline
echo "ABCDEFGHIJKLMN" | colrm 3 5 | colrm 8 10
# Output: ABGJKLMN
Text Processing Examples
Log File Processing
# Remove timestamps from log files (assuming fixed-width timestamps)
# Log format: "2023-12-01 10:30:45 [INFO] Message here"
cat application.log | colrm 1 20
# Output: "[INFO] Message here"
# Remove IP addresses from access logs
# Log format: "192.168.1.1 - - [01/Dec/2023:10:30:45] GET /path"
cat access.log | colrm 1 16
# Output: "- - [01/Dec/2023:10:30:45] GET /path"
# Process system logs
cat /var/log/syslog | colrm 1 16 | head
# Remove date/time from custom log format
# Format: "2023-12-01|10:30:45|ERROR|System message"
echo "2023-12-01|10:30:45|ERROR|System message" | colrm 1 20
# Output: "ERROR|System message"
# Clean up multi-part timestamps
echo "[2023-12-01 10:30:45.123] Process started" | colrm 2 24
# Output: "Process started"
Data File Processing
# Process fixed-width data files
# Format: ID(3) Name(20) Age(3) City(15)
# Input: "001John Smith 25New York City "
cat data.txt | colrm 4 23
# Output: "001 25New York City "
# Remove middle columns
cat data.txt | colrm 4 23 | colrm 6 8
# Output: "001 New York City "
# Process CSV-like fixed-width data
cat fixed_width.txt | colrm 11 30
# Extract specific data columns
echo "001John Doe 025New York NY10001" | colrm 4 22 | colrm 8 23
# Output: "001 New York NY10001"
# Clean up padded database export
echo "CUSTOMER001 John Smith ACTIVE " | colrm 12 32
# Output: "CUSTOMER001 ACTIVE "
Advanced Text Manipulation
Multiple Operations
# Remove multiple sections using pipeline
echo "1234567890ABCDEFGHIJ" | colrm 3 5 | colrm 8 10
# Output: 1267890ABCDEFGHIJ
# Process text with multiple removals
cat textfile.txt | colrm 1 5 | colrm 20 25 > cleaned.txt
# Remove header and footer from fixed-width reports
cat report.txt | colrm 1 10 | colrm 70 80
# Complex text transformation
echo "HEADER_INFO_12345_MAIN_DATA_FOOTER_INFO" | \
colrm 1 12 | colrm 17 26 | colrm 35 45
# Output: "_MAIN_DATA_"
# Nested operations for precise control
printf "Line1: abcdefghijklmnopqrstuvwxyz\n" | \
colrm 6 15 | colrm 12 20
# Output: "Line1: abcde"
Working with Multiple Files
# Process multiple files with loop
for file in *.txt; do
colrm 1 5 < "$file" > "processed_$file"
done
# Batch process logs
for log in app_*.log; do
colrm 16 25 < "$log" > "cleaned_$log"
done
# Create processed versions
find . -name "*.dat" -exec sh -c 'colrm 1 8 < "$1" > "proc_$1"' _ {} \;
# Parallel processing with xargs
ls *.log | xargs -I {} -P 4 sh -c 'colrm 1 20 < "{}" > "clean_{}"'
# Process with error handling
for file in data_*.txt; do
if [ -f "$file" ]; then
colrm 5 15 < "$file" > "${file%.txt}_processed.txt" || \
echo "Error processing $file"
fi
done
Practical Applications
System Administration
Log File Cleanup
# Clean up system logs by removing timestamps
tail -f /var/log/messages | colrm 1 16
# Process Apache access logs
cat /var/log/apache2/access.log | colrm 1 27 > clean_access.log
# Remove user information from process listings
ps aux | colrm 1 80 | colrm 9 25
# Clean up mail logs
cat /var/log/mail.log | colrm 1 20 > mail_clean.log
# Real-time log monitoring with column removal
tail -f /var/log/syslog | colrm 1 16 | grep "ERROR"
# Process nginx logs
# Format: "192.168.1.1 - user [01/Dec/2023:10:30:45] request"
cat nginx_access.log | colrm 1 12 | colrm 3 15 > clean_nginx.log
# Remove process IDs from ps output
ps aux | colrm 10 15 > ps_no_pid.txt
# Clean up cron logs
cat /var/log/cron | colrm 1 17 | colrm 25 30
Configuration File Processing
# Remove comments column from config files
cat config.txt | colrm 40 80 > clean_config.txt
# Process host files (remove IP addresses)
cat /etc/hosts | colrm 1 16 | grep -v "^#"
# Clean up passwd file (remove password field)
cat /etc/passwd | colrm 30 45 > clean_passwd
# Remove commented sections from config
cat /etc/sudoers | colrm 1 8 | grep -v "^#" | colrm 30 80
# Process fstab entries
cat /etc/fstab | colrm 40 80 > fstab_brief
# Clean up group file
cat /etc/group | colrm 15 50 > group_simple
# Process crontab files
crontab -l | colrm 1 15 > crontab_clean
# Remove options from sshd_config
cat /etc/ssh/sshd_config | colrm 25 80 > sshd_basic
Data Processing
Fixed-Width Data Files
# Process mainframe-style data files
# Format: CUSTID(5) NAME(25) ADDRESS(30) CITY(15) STATE(2) ZIP(5)
cat customers.dat | colrm 6 30 > customer_ids.txt
cat customers.dat | colrm 1 5 | colrm 26 50 > customer_addresses.txt
# Extract specific columns from financial data
cat financial.txt | colrm 1 10 | colrm 20 35 > key_data.txt
# Process inventory data
cat inventory.txt | colrm 15 25 | colrm 40 50 > clean_inventory.txt
# Database export cleanup
# Format: ID(8) NAME(30) DEPT(20) SALARY(10) DATE(10)
cat employees.txt | colrm 9 38 | colrm 48 58 > employees_summary.txt
# Process COBOL-style data
cat cobol_data.txt | colrm 1 5 | colrm 25 45 | colrm 60 80
# Legacy system data conversion
echo "RECORD001FIELD_DATA_000001234567890" | colrm 1 6 | colrm 20 35
# Output: "FIELD_DATA_00000"
# Clean up EDI data segments
cat edi_file.txt | colrm 4 20 | colrm 30 50
Report Generation
# Create summary reports by removing detail columns
cat detailed_report.txt | colrm 25 60 > summary_report.txt
# Process performance data
cat perf_data.txt | colrm 10 20 > key_metrics.txt
# Clean up database exports
cat db_export.txt | colrm 1 15 | colrm 50 100 > clean_export.txt
# Generate executive summary
cat full_report.txt | colrm 1 30 | colrm 70 120 > exec_summary.txt
# Create tabular summary from verbose output
df -h | colrm 1 15 | colrm 45 60 | column -t
# Process system monitoring data
cat vmstat_output.txt | colrm 1 20 | colrm 60 80 > vmstat_clean.txt
# Clean up application logs for reporting
cat app_log.txt | colrm 1 25 | grep "ERROR\|WARN" > error_summary.txt
# Create statistical summary
cat stats_data.txt | colrm 10 30 | colrm 50 70 > stats_summary.txt
Development Workflows
Code Processing
# Remove line numbers from source code
cat numbered_code.c | colrm 1 5 > clean_code.c
# Process generated code files
cat generated.txt | colrm 1 10 | colrm 80 120 > processed.txt
# Clean up debug output
cat debug.log | colrm 20 40 > clean_debug.log
# Remove copyright headers from source files
find . -name "*.py" -exec sh -c 'colrm 1 70 < "$1" > "$1.tmp" && mv "$1.tmp" "$1"' _ {} \;
# Process compiler output
cat compile_output.txt | colrm 1 30 | grep "error\|warning"
# Clean up makefile output
make 2>&1 | colrm 1 25 | grep -E "(error|undefined|undefined)"
# Remove timestamps from build logs
cat build.log | colrm 1 23 > build_clean.log
# Process test results
cat test_output.txt | colrm 1 15 | colrm 40 60 > test_summary.txt
# Clean up profiler output
cat profiler.txt | colrm 1 20 | colrm 50 80 > profiler_clean.txt
Text Analysis
# Remove padding from text files
cat padded.txt | colrm 61 80 > unpadded.txt
# Process survey data
cat survey.txt | colrm 1 8 | colrm 50 80 > responses.txt
# Clean up OCR output
cat ocr_output.txt | colrm 70 100 > cleaned_ocr.txt
# Remove page numbers from document dumps
cat document.txt | colrm 70 80 > doc_no_page_nums.txt
# Process form data
cat form_submissions.txt | colrm 1 12 | colrm 45 65 > form_data.txt
# Clean up imported CSV data with fixed positions
cat import_data.txt | colrm 1 10 | colrm 25 35 | colrm 50 60 > clean_import.txt
# Remove line numbers from academic papers
cat paper_with_lines.txt | colrm 1 5 > paper_no_lines.txt
# Process bibliography entries
cat bibliography.txt | colrm 1 25 | colrm 80 120 > biblio_clean.txt
Advanced Techniques
Combining with Other Commands
Pipeline Operations
# Combine with grep for filtered processing
cat data.txt | grep "ERROR" | colrm 1 15 > errors.txt
# Use with sort after column removal
cat data.txt | colrm 1 10 | sort > sorted_data.txt
# Process with awk after colrm
cat file.txt | colrm 5 20 | awk '{print $1,$3}'
# Chain multiple text processing commands
cat raw_data.txt | colrm 1 8 | tr '[:upper:]' '[:lower:]' | uniq > final_data.txt
# Use with cut for complex column extraction
cat complex_data.txt | colrm 1 5 | cut -c1-10,20-30
# Combine with sed for pattern-based cleanup
cat messy_data.txt | colrm 1 10 | sed 's/\s\+/ /g' | colrm 20 30
# Use with awk for conditional processing
cat data.txt | awk '$3 > 100' | colrm 5 15
# Pipe through multiple filters
cat log.txt | grep "ERROR" | colrm 1 20 | sort | uniq > error_summary.txt
Complex Text Processing
# Multi-step data transformation
cat input.txt | colrm 1 5 | colrm 20 30 | sed 's/\s\+/ /g' > output.txt
# Process and format data
cat data.txt | colrm 1 10 | fmt -w 60 > formatted.txt
# Create formatted reports
cat raw_data | colrm 5 25 | column -t > nice_report.txt
# Clean up and reformat text
cat ugly_text.txt | colrm 1 8 | tr -s ' ' | fold -w 72 > clean_text.txt
# Extract and reorganize data
echo "12345DATA789MORE12345INFO" | colrm 6 8 | colrm 9 13
# Output: "12345MORE12345INFO"
# Complex data cleanup pipeline
cat dirty_data.txt | colrm 1 15 | \
sed 's/[^[:print:]]//g' | \
tr -s '\n' | \
colrm 50 100 > clean_data.txt
# Process logs with multiple filters
cat app.log | colrm 1 12 | \
grep -E "(ERROR|WARN)" | \
colrm 20 30 | \
sort | \
uniq -c > error_counts.txt
# Advanced text manipulation
cat file.txt | \
colrm 1 5 | \
awk '{printf "%-20s %s\n", $1, $2}' | \
colrm 25 40 > formatted_output.txt
Script Integration
Backup Script Example
#!/bin/bash
# Process log files before backup
LOG_DIR="/var/log"
BACKUP_DIR="/backup"
DATE=$(date +%Y%m%d)
TEMP_DIR="/tmp/colrm_temp$$"
# Create temporary directory
mkdir -p "$TEMP_DIR"
# Function to process log file
process_log() {
local input_file="$1"
local output_file="$2"
# Remove timestamps and sensitive info
if [[ -f "$input_file" ]]; then
colrm 1 16 < "$input_file" | colrm 50 80 > "$output_file"
echo "Processed: $(basename "$input_file")"
else
echo "Warning: $input_file not found"
fi
}
# Process and backup logs
for log_file in "$LOG_DIR"/*.log; do
if [[ -f "$log_file" ]]; then
basename=$(basename "$log_file")
output_file="$TEMP_DIR/${basename}_$DATE"
process_log "$log_file" "$output_file"
fi
done
# Create archive of processed logs
cd "$TEMP_DIR"
tar -czf "$BACKUP_DIR/processed_logs_$DATE.tar.gz" *
# Cleanup
rm -rf "$TEMP_DIR"
echo "Log files processed and backed up successfully"
Data Processing Script
#!/bin/bash
# Advanced fixed-width data processing
INPUT_DIR="/data/input"
OUTPUT_DIR="/data/output"
ERROR_LOG="/var/log/data_processing.log"
# Create output directory
mkdir -p "$OUTPUT_DIR"
# Function to process data file
process_data_file() {
local input_file="$1"
local filename=$(basename "$input_file" .dat)
local output_file="$OUTPUT_DIR/${filename}_processed.txt"
echo "Processing: $filename" >> "$ERROR_LOG"
# Remove header and detail columns, handle errors
if colrm 1 10 < "$input_file" | colrm 40 80 > "$output_file" 2>> "$ERROR_LOG"; then
echo "Successfully processed: $filename" >> "$ERROR_LOG"
return 0
else
echo "Error processing: $filename" >> "$ERROR_LOG"
return 1
fi
}
# Count processed files
processed_count=0
error_count=0
# Process all .dat files
for data_file in "$INPUT_DIR"/*.dat; do
if [[ -f "$data_file" ]]; then
if process_data_file "$data_file"; then
((processed_count++))
else
((error_count++))
fi
fi
done
# Generate summary report
echo "Data processing completed on $(date)" >> "$ERROR_LOG"
echo "Files processed: $processed_count" >> "$ERROR_LOG"
echo "Errors encountered: $error_count" >> "$ERROR_LOG"
echo "Data processing completed"
echo "Processed: $processed_count files"
echo "Errors: $error_count files"
Automated Log Analysis
#!/bin/bash
# Automated log analysis with colrm
LOG_SOURCES=(
"/var/log/apache2/access.log"
"/var/log/nginx/access.log"
"/var/log/application.log"
)
OUTPUT_DIR="/tmp/log_analysis"
DATE=$(date +%Y%m%d_%H%M%S)
mkdir -p "$OUTPUT_DIR"
# Function to analyze log file
analyze_log() {
local log_file="$1"
local base_name=$(basename "$log_file" .log)
# Extract key information by removing columns
cat "$log_file" | \
colrm 1 27 | \ # Remove timestamp and IP
grep -E "(GET|POST|PUT|DELETE)" | \
colrm 30 80 | \ # Remove protocol and status
sort | \
uniq -c | \
sort -nr > "$OUTPUT_DIR/${base_name}_endpoints_$DATE.txt"
# Extract error messages
cat "$log_file" | \
grep -E "(ERROR|WARN|CRIT)" | \
colrm 1 20 | \ # Remove timestamp
colrm 50 100 > "$OUTPUT_DIR/${base_name}_errors_$DATE.txt"
}
# Process all logs
for log_source in "${LOG_SOURCES[@]}"; do
if [[ -f "$log_source" ]]; then
echo "Analyzing: $log_source"
analyze_log "$log_source"
else
echo "Log file not found: $log_source"
fi
done
# Generate summary
echo "Log analysis completed at $(date)" > "$OUTPUT_DIR/analysis_summary_$DATE.txt"
echo "Output files created in: $OUTPUT_DIR"
echo "Log analysis complete. Check $OUTPUT_DIR for results."
Special Operations
Working with Encodings
Multi-byte Character Handling
# Note: colrm works with bytes, not characters
# For UTF-8 files, be careful with multi-byte characters
# Set locale for proper handling
export LANG=C
export LC_ALL=C
# Process ASCII-only files safely
cat ascii_file.txt | colrm 5 15 > output.txt
# For UTF-8 files, consider using other tools
# colrm may split multi-byte characters
# Safe UTF-8 processing with iconv first
iconv -f UTF-8 -t ASCII//TRANSLIT input.txt > temp_ascii.txt
colrm 5 15 < temp_ascii.txt > output.txt
rm temp_ascii.txt
# Test for multi-byte issues
echo "café résumé naïve" | colrm 5 6
# May produce corrupted output due to UTF-8 byte splitting
# Workaround for UTF-8 files
awk '{print substr($0,1,4) substr($0,7)}' utf8_file.txt
# Detect potential issues
file -bi input.txt | grep -q utf-8 && \
echo "Warning: UTF-8 file detected, colrm may cause character corruption"
Binary File Processing
# Process binary files with caution
# colrm works byte-by-byte
# Remove headers from binary files
dd if=program.bin bs=1 skip=100 | colrm 50 100 > program_clean.bin
# Extract data portions
cat binary.dat | colrm 1 20 > extracted_data.bin
# Process with hexdump for verification
hexdump -C input.bin | head
colrm 10 20 < input.bin > output.bin
hexdump -C output.bin | head
# Safe binary processing with dd
dd if=input.bin bs=1 count=100 of=header.bin
dd if=input.bin bs=1 skip=100 of=body.bin
colrm 50 100 < body.bin > body_clean.bin
cat header.bin body_clean.bin > final.bin
# Binary file analysis
cat unknown_file.bin | colrm 1 16 | file -
Performance Considerations
Large File Processing
# Process large files efficiently
# colrm is memory efficient as it processes line by line
# Process very large files
colrm 1 10 < huge_file.txt > processed.txt
# Use with pv for progress monitoring
pv huge_file.txt | colrm 1 10 > processed.txt
# Batch process multiple large files
find . -name "*.log" -size +100M -exec bash -c \
'echo "Processing $1"; colrm 1 16 < "$1" > "clean_$1"' _ {} \;
# Parallel processing with GNU parallel
ls *.txt | parallel -j 4 'colrm 1 20 < {} > processed_{.}'
# Memory-efficient streaming
tail -f large_log.txt | colrm 1 15 | grep "ERROR"
# Process in chunks for very large files
split -l 1000000 huge_file.txt chunk_
for chunk in chunk_*; do
colrm 5 25 < "$chunk" > "processed_$chunk" &
done
wait
cat processed_chunk_* > final_processed.txt
rm chunk_* processed_chunk_*
Optimization Tips
# colrm is generally fast for simple operations
# For complex column operations, consider:
# Use cut for delimiter-based column removal
cut -c1-5,20- file.txt # Similar to multiple colrm operations
# Use awk for pattern-based processing
awk '{print substr($0,1,4) substr($0,21)}' file.txt
# Use sed for pattern-based column removal
sed 's/\(.\{4\}\).\{15\}/\1/' file.txt
# Performance comparison
echo "Testing colrm performance:"
time colrm 1 10 < large_file.txt > /dev/null
echo "Testing cut performance:"
time cut -c11- large_file.txt > /dev/null
echo "Testing awk performance:"
time awk '{print substr($0,11)}' large_file.txt > /dev/null
# Choose appropriate tool based on:
# - Simplicity: colrm for fixed-position removal
# - Flexibility: awk for conditional logic
# - Speed: cut for simple character extraction
# - Memory: colrm processes line by line
Integration and Automation
Cron Jobs
# Add to crontab for daily log processing
# 0 2 * * * /usr/local/bin/process_logs.sh
# Daily log cleanup script
#!/bin/bash
LOG_FILE="/var/log/application.log"
CLEAN_LOG="/var/log/application_clean.log"
ARCHIVE_DIR="/var/log/archive"
DATE=$(date +%Y%m%d)
# Process today's log
if [[ -f "$LOG_FILE" ]]; then
# Remove sensitive information and timestamps
colrm 1 16 < "$LOG_FILE" | colrm 45 80 > "$CLEAN_LOG"
# Archive original log
mv "$LOG_FILE" "$ARCHIVE_DIR/application_$DATE.log"
# Create symlink for continuity
ln -sf "$ARCHIVE_DIR/application_$DATE.log" "$LOG_FILE"
echo "Log processing completed for $(date)"
else
echo "Log file not found: $LOG_FILE" >&2
exit 1
fi
System Logging Integration
# Real-time log processing with tail
tail -f /var/log/syslog | colrm 1 16 | tee clean_syslog.log
# Process logs as they arrive
tail -F /var/log/messages | colrm 16 25 >> processed_messages.log
# Multi-log monitoring with colrm
tail -f /var/log/{apache,nginx}/*.log | \
colrm 1 27 | \
grep -E "(ERROR|404|500)" | \
tee critical_errors.log
# Log rotation with processing
#!/bin/bash
for log in /var/log/*.log; do
if [[ -s "$log" ]]; then
# Process and compress
colrm 1 20 < "$log" | gzip > "${log}.processed.gz"
# Truncate original
> "$log"
fi
done
Pipeline Integration
# Complex data processing pipeline
cat raw_data.csv | \
colrm 1 15 | \ # Remove headers
grep -v "^#" | \ # Remove comments
colrm 20 40 | \ # Remove middle columns
sort | uniq > processed_data.txt
# Log analysis pipeline
tail -f access.log | \
colrm 1 27 | \ # Remove IP and timestamp
grep "POST" | \ # Filter POST requests
colrm 30 80 | \ # Remove protocol info
sort | uniq -c | sort -nr > post_requests.txt
# Real-time monitoring
netstat -an | \
grep ESTABLISHED | \
colrm 1 30 | \ # Remove protocol and addresses
colrm 20 50 | \ # Remove state info
sort | uniq > active_connections.txt
Troubleshooting
Common Issues
Character Encoding Problems
# Problem: Corrupted output with UTF-8 files
# Solution: Convert to ASCII or use locale-appropriate tools
# Check file encoding
file -bi problematic_file.txt
# Convert UTF-8 to ASCII before processing
iconv -f UTF-8 -t ASCII//TRANSLIT file.txt > ascii_file.txt
colrm 1 10 < ascii_file.txt > output.txt
# Use different locale settings
LANG=C colrm 1 10 < utf8_file.txt > output.txt
# Alternative: Use awk for UTF-8 safe processing
awk '{print substr($0,1,4) substr($0,11)}' utf8_file.txt
Incorrect Column Numbers
# Problem: Wrong columns removed
# Solution: Count characters carefully
# Show character positions with numbering
echo "1234567890" | cat -n
# 1 1234567890
# Test with sample data first
echo "Sample text for testing" | colrm 7 12
echo "Sample text for testing" | cat -A # Show all characters
# Use od to see exact byte positions
echo "Test string" | od -c
echo "Test string" | od -b
# Create column reference
printf "%s\n" {1..80} | tr '\n' ' '
printf "\nSample text here\n"
# Verify with hexdump
echo "Test" | hexdump -C
Performance Issues
# Problem: Slow processing of large files
# Solution: Use appropriate buffer sizes or alternative tools
# Use dd for large binary files
dd if=input.txt bs=1M | colrm 1 100 > output.txt
# Consider using more efficient tools for complex operations
cut -c1-50,101- large_file.txt > output.txt
# Process in parallel
ls *.txt | parallel -j 4 'colrm 1 20 {} > processed_{.}'
# Use buffering for better I/O
stdbuf -oL colrm 1 10 < large_file.txt > output.txt
# Monitor system resources during processing
/usr/bin/time -v colrm 1 10 < huge_file.txt > /dev/null
# Test different approaches
echo "Testing colrm:"
time colrm 1 10 < test_file.txt > /dev/null
echo "Testing cut:"
time cut -c11- test_file.txt > /dev/null
echo "Testing awk:"
time awk '{print substr($0,11)}' test_file.txt > /dev/null
Memory and File Size Issues
# Problem: Out of memory with very large files
# Solution: Process in chunks or use streaming
# Process file in chunks
split -l 500000 huge_file.txt part_
for part in part_*; do
colrm 1 20 < "$part" >> output.txt
rm "$part"
done
# Use streaming to avoid loading entire file
tail -f huge_file.txt | colrm 1 10 | head -1000 > sample.txt
# Monitor memory usage
while true; do
ps aux | grep colrm
sleep 1
done &
colrm 1 10 < huge_file.txt > output.txt
kill %1
Related Commands
cut- Remove sections from each line of filesawk- Pattern scanning and processing languagesed- Stream editor for filtering and transforming texttr- Translate or delete characterspaste- Merge lines of filescolumn- Columnate listsfmt- Simple optimal text formatterpr- Convert text files for printingexpand- Convert tabs to spacesunexpand- Convert spaces to tabs
Best Practices
- Test on sample data before processing large files to verify correct column positions
- Count character positions carefully - colrm uses 1-based indexing, not 0-based
- Use absolute paths in scripts for reliability and reproducibility
- Backup original files before batch processing to prevent data loss
- Consider character encoding when working with non-ASCII text to avoid corruption
- Validate input format - colrm works best with fixed-width text, not delimited data
- Use appropriate tools - consider cut or awk for delimiter-based data processing
- Monitor performance with large files using pv or time to avoid system overload
- Handle edge cases like empty lines or short lines gracefully in scripts
- Document transformations for future reference and team collaboration
- Check for multi-byte characters in UTF-8 files to prevent character splitting
- Use error handling in scripts to catch processing failures early
Performance Tips
- colrm is memory-efficient - processes line by line, suitable for large files
- Fast for simple column removal operations compared to more complex tools
- Use ASCII-only input for predictable results and maximum performance
- Process large files in chunks if memory is constrained or system load is high
- Consider alternative tools for complex pattern-based operations (awk, sed)
- Use cut for delimiter-based column operations when dealing with structured data
- Use awk for conditional column removal based on content or patterns
- Test with sample data to verify correct column positions before batch processing
- Pipe directly from source to avoid intermediate files and reduce I/O overhead
- Use buffering for I/O intensive operations with stdbuf or appropriate tools
- Parallel processing can speed up multiple file operations using xargs or GNU parallel
- Avoid unnecessary operations - combine multiple colrm operations when possible
The colrm command provides a simple, efficient way to remove fixed-width columns from text files. While it has a specific use case compared to more flexible tools like cut and awk, it excels at processing fixed-width text files, logs, and mainframe-style data where character positions are consistent across lines. Its straightforward syntax and low memory overhead make it an excellent choice for high-throughput text processing pipelines and automated data cleanup tasks.